THE CONE TOPOLOGY ON A MANIFOLD WITHOUT FOCAL POINTS

M. S. GOTO

Introduction

Let M be a complete, simply connected Riemannian manifold without focal points. Let $\alpha(t)$ and $\beta(t)$, $t \ge 0$, be geodesic rays parametrized by their arc lengths, respectively. Then α and β are asymptotic if the distance between $\alpha(t)$ and $\beta(t)$ is bounded for all $t \ge 0$. Let $M(\infty)$ be the set of all classes of asymptotic geodesic rays and let $\overline{M} = M \cup M(\infty)$. In [4] it was proved that for any point p in M and a geodesic ray α , there exists a unique geodesic ray β asymptotic to α with $\beta(0) = p$.

Let E be \mathbb{R}^{n+1} with the natural euclidean metric. Then E is an example of M. In this case two geodesic rays $\alpha(t) = a + tv(||v|| = 1)$ and $\beta(t) = b + tw(||w|| = 1)$ are asymptotic if and only if they are parallel, i.e., v = w. We denote the asymptotic class containing α by ∞v , and suppose that the ray is extended to the interval $[0, \infty]$ by putting $\alpha(\infty) = \infty v$. Then $E(\infty)$ has the natural topology as the unit sphere S^n , and \overline{E} can be identified with the closed unit (n + 1) — disk.

The purpose of this note is to prove the following:

Theorem. Let M be a complete, simply connected Riemannian manifold without focal points. Then \overline{M} has a canonical topology with the following property: For any $p \in M$, the exponential map: $T_pM \to M$ extends uniquely to a homeomorphism from $\overline{T_pM}$ onto \overline{M} .

The topology is called the *cone topology* since for each point x in $M(\infty)$, cones containing x form a local basis at x.

The theorem is known in the case of nonpositive curvature (see [2]). In the case of no focal points, it was proved if either the dimension of M is 2, or the geodesic flow of M is of Anosov type (see [4]). The proof here refers to [3] and [4].

Proof of the theorem. Let K(t) be a symmetric $n \times n$ matrix valued continuous function defined for all $t \in \mathbb{R}$, and consider the $n \times n$ matrix

Received January 12, 1978, and, in revised form, March 21, 1979. Supported in part by NSF grant MCS 77-18723.

596 M. S. GOTO

differential equation

$$X''(t) + K(t)X(t) = 0,$$

where the derivatives are taken componentwise. Let A be the solution of (J) with the initial conditions A(0) = 0 and A'(0) = I (the identity matrix). Also for s > 0 let D_s be the solution with the boundary conditions $D_s(0) = I$ and $D_s(s) = 0$. Then it is known that $\lim_{s\to\infty} D_s = D$ exists and is given by

$$D(t) = A(t) \int_{t}^{\infty} (A^*A)^{-1}(u) \ du,$$

where A^* denotes the transposed matrix of A.

Hereafter, M denotes a complete, simply connected Riemannian manifold of dimension n+1 and class C^{∞} without focal points. For $p \in M$, let T_pM denote the tangent space at p, and let $S_pM = \{v \in T_pM; ||v|| = 1\}$. Let SM be the unit tangent bundle. For $v \in S_pM$ we denote by γ_v the geodesic ray with $\gamma_v(0) = p$ and $\gamma_v'(0) = v$, parametrized by its arc length. Let $\{e_1(t), \ldots, e_n(t), e_{n+1}(t) = \gamma_v'(t)\}$ be a parallel orthonormal frame field along the geodesic γ_v . If $Y(t) = \sum_{i=1}^n y_i(t)e_i(t)$ is a normal vector along γ_v , then we can identify Y with the curve $t \mapsto (y_1(t), \ldots, y_n(t))$ in \mathbb{R}^n . For each $t \in \mathbb{R}$ we denote $K(t) = (\langle R(e_i(t), \gamma'(t))\gamma'(t), e_j(t)\rangle)$, where R is the curvature tensor, and consider (J) for this K(t). The solution given above will be denoted by D_v .

Next, we define a map b_{vs} : $M \to \mathbb{R}$ for $v \in SM$ by

$$b_{vs}(q) = s - d(\gamma_v(s), q),$$

where d denotes the distance. Then $\lim_{s\to\infty} b_{vs} = b_v$ exists. The function b_v is called the *Busemann function* with respect to v, and is known to be of class C^2 .

Let v be in SM, and $q \in M$. Then there exists a unique geodesic ray starting at q asymptotic to γ_v , and the tangent vector of the geodesic ray at q is given by $(\nabla b_v)(q)$. To prove our theorem, it is enough to see the continuous dependence of ∇b_v on the parameter v according to the discussion in [2, §2].

Let p be a point of M, and v a unit vector at p. Then $D'_v(0)$ is a linear transformation of the vector space $v^{\perp} = \{x \in T_p M; x \perp v\}$. We shall consider the vector bundle over SM given by

$$\{(v, \varphi); v \in SM, \varphi \in \operatorname{End}(v^{\perp})\},\$$

and the cross section: $v \mapsto D'_v(0)$. In [3] Eschenburg obtained that

$$\nabla_w(\nabla b_n) = D'_n(0)(w) \text{ for } w \in v^{\perp},$$

and that $D_{v}'(0)$ depends continuously on v.

We shall now extend $D'_v(0)$, $v \in SM$, to an endomorphism $\mathfrak{D}(v)$ of T_pM by

putting

$$\begin{cases} \mathfrak{D}(v)(w) = D'_v(0)(w) & \text{for } w \in v^{\perp}, \\ \mathfrak{D}(v)(v) = 0. \end{cases}$$

Then $\mathfrak{D}(v)$ is a cross section of the vector bundle

$$\{(v, \psi); v \in S_p M, \psi \in \operatorname{End}(T_p M) \text{ for } p \in M\}$$

over SM and is obviously continuous. On the other hand,

$$\nabla_{\mathbf{c}}(\nabla b_{\mathbf{c}}) = 0$$

and hence

$$\nabla(\nabla b_v) = \mathfrak{D}(v)$$

is continuous with respect to $v \in SM$.

Let p and q be distinct points in M. We pick a smooth curve $\sigma(s)$ such that $\sigma(0) = p$ and $\sigma(1) = q$, and shall consider a differential equation

$$(**) \qquad \frac{\nabla}{ds}X(s) = \mathfrak{D}(X(s))(\sigma'(s)),$$

where X(s) is a unit vector field along $\sigma(s)$ of class C^1 . For a unit vector v at p,

$$Y_{n}(s) := (\nabla b_{n})(\sigma(s))$$

is a solution of (**) with $Y_v(0) = v$. We shall prove that $Y_v(s)$ is the unique solution with the initial condition v.

Suppose that X(s) is a solution of (**) with X(0) = v. We consider the variation $f(t, s) = \exp_{\sigma(s)}tX(s)$, $s \in [0, 1]$, $t \ge 0$, of the geodesic ray γ_v . Then $J_s(t) := (\partial/\partial s)f(t, s)$ is a Jacobi field for every s. Since X(s) is of class C^1 , $J_s(t)$ is continuous with respect to s. Fix $s_0 \in [0, 1]$ and put $w = X(s_0)$. Then

$$Y_{w}(s) := \nabla b_{w}(\sigma(s))$$

is a solution of (**) with $Y_w(s_0) = w$. We put $\tilde{f}(t, s) = \exp_{\sigma(s)} t Y_w(s)$ and $\tilde{J}(t) = (\partial/\partial s)\tilde{f}(t, s)|_{s=s_0}$. Then $\tilde{J}(t)$ is the Jacobi field along γ_w with

$$\tilde{J}(0)=\sigma'(s_0), \tilde{J}'(0)=\mathfrak{D}(w)\big(\sigma'(s_0)\big).$$

Moreover, since the variational curves $t \mapsto \tilde{f}(t, s)$ are all asymptotic to γ_w , it follows that

$$\|\tilde{J}(t)\| \le \|\tilde{J}(0)\|$$
 for any $t \ge 0$.

On the other hand, $J_{s_0}(0) = \sigma'(s_0)$ and $J'_{s_0}(0) = \mathfrak{D}(w)(\sigma'(s_0))$. Hence the Jacobi field J_{s_0} coincides with \tilde{J} . Thus

$$||J_s(t)|| \le ||J_s(0)|| = ||\sigma'(s)|| \text{ for } s \in [0, 1], t \ge 0.$$

Therefore

$$d(\gamma_v(t), f(t, s_0)) \le \int_0^{s_0} ||J_s(t)|| ds \le \int_0^{s_0} ||\sigma'(s)|| ds,$$

and hence the geodesic ray $t \mapsto f(t, s) = \exp_{\sigma(s)} tX(s)$ is asymptotic to γ_v for any $s \in [0, 1]$. By the uniqueness of asymptotic geodesic rays, we have

$$X(s) = (\nabla b_n)(\sigma(s)).$$

Thus the equation (**) has a unique solution. Because of the continuity of \mathfrak{D} , the solution of (**) depends continuously on the initial value by a theorem of differential equations (cf. [1, Chapter 2, Theorem 4.1]). Namely, ∇b_v is continuous with respect to v. Hence the proof is complete.

References

- E. A. Coddington & N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955.
- [2] P. Eberlein & B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1973) 45-109.
- [3] J. H. Eschenburg, Horospheres and the stable part of the geodesic flow, Math. Z. 153 (1977) 237-251.
- [4] M. S. Goto, Manifolds without focal points, J. Differential Geometry 13 (1978) 341-359.
- [5] L. W. Green, A theorem of E. Hopf, Michigan Math. J. 5 (1958) 31-34.

INSTITUTE FOR ADVANCED STUDY, PRINCETON